A Battle Cry for a
System-level JVM
in Debian

Pablo Duboue

A Battle Cry for a
System-level JVM in Debian

Pablo Duboue'?

DebConf10, NYC

'pablo.duboue@gmail.com
2DrDub on #debian-java

Outline

«O» «Fr «=>»

«=»

v

Outline

«O» «Fr «=>»

«=»

v

What Are Multi-Application JVMs? Syetom v
in Debian

Pablo Duboue

» A JVM that supports isolates is a VM which allows
running multiple applications (processes, tasks)
» Multiple programs with different classpaths and

different public static void
main (String[]) entry points.

» These different applications should not interfere with
each other.

» Running them in the same JVM should produce the
same results as in separate JVMs.

Isolates JSR R
in Debian

Pablo Duboue

» The API bits of a Multi-Apps JVM are defined in
JSR-121

Krzysztof Palacz and others, JSR-000121 Application
Isolation APl Specification (2006)

» javax.lisolate.Isolate

» http://jcp.org/aboutJava/
communityprocess/nal/jsrl21/

http://jcp.org/aboutJava/communityprocess/nal/jsr121/
http://jcp.org/aboutJava/communityprocess/nal/jsr121/

javax.isolate.lsolate

// The creating isolate
Isolate i = new Isolate ("org.example.App",
i.start ();

// The newly created isolate
package org.example;
public class App {
public static void main(String ... args) {
for(int i = 0; i < args.length; i++)
System.out. printin(args[i]);

"test");

A Battle Cry for a
System-level JVM
in Debian

Pablo Duboue

Outline

«O» «Fr «=>»

«=»

v

Why Do We Want Multi-Apps JVMs? Systomiors VM

in Debian

Pablo Duboue

» As Java desktop applications become more
popular...
» Imagine a chat client written in Java

» Plus a mail client written in Java
» Plus an office suite, also written in Java

» Not only just “Java” but also eclipse-based!
» And top it off by running on a netbook.
» But it does not need to stop there...

» You can be hosting a few debian DVDs torrents using
azureus (p2p)

» Having your desktop being indexed with a
lucene-based desktop search

» Doing a voice conversation using SIP-communicator

Lots of Applications, the User Should Expect &eemi i

in Debian

Trouble. Pablo Duboue

» Per the MS Windows disclaimer:

» “running multiple applications will slow down your
system”

» Problem is, this is much worse than running
machine-compiled code.

» First, the code has to be recompiled multiple times
for each of the different copies

» Wasted time recompiling the same code over and
over again

» And all these multiple compiled copies have to be
kept in RAM

» Which occupies much more space than the original
jars

» As research shows compilation results in a 6-8
increase in machine code size vs. bytecode (Cramer
et al. 1997)

A Battle Cry for a

DLLs vs. Java .class Systam loval JVM

in Debian

Pablo Duboue

» In a sense, while each .class is the machine code
equivalent of a dynamic-load libray, after dynamic
(JIT) compilation a copy of each library is duplicated
across JVMs

» Imagine each machine code program you are
running has its own, private copy of the glibc loaded
in RAM

> Yes, Java is that bad!

Outline

«O» «Fr «=>»

«=»

v

Grzegorz Czajkowski and Laurent Daynés. Systom vl WM
in Debian
» The beauty of working on Multi-Apps JVMs is that Fablo Buboue
there has been plenty of work at research institutions

» Many of the hard problems have been ironed out
» And with OpendDK released, there is a real JVM to
work with

» Sun Research Labs, project Barcelona:

» http:
//research.sun.com/projects/barcelona/

» Three papers worth reading:

1. Grzegorz Czajkowski, Application isolation in the
Java virtual machine (2000)

2. Grzegorz Czajkowski and Laurent Daynes,
Multitasking without Compromise: a Virtual Machine
Evolution (2001)

3. Grzegorz Czajkowski et al., Incommunicado:
Efficient Communication for Isolates (2002)

http://research.sun.com/projects/barcelona/
http://research.sun.com/projects/barcelona/

Outline

«O» «Fr «=>»

«=»

v

Some Approaches. Syetom v

in Debian

Pablo Duboue

1. Approach-0: Custom Class-loaders.
» Throw everything into a vanilla JVM.
2. Approach-1: Bytecode Interposition.

» Throw everything into a vanilla JVM but change
static fields on-the-fly.

3. Approach-2: JVM Modification.

» Change the implementation of static fields in the JVM
plus sandboxed JNI and shared heaps.

Approach-0: Custom Class-loaders Systomlovel M

in Debian

Pablo Duboue

» Java has a means to let users map from fully
qualified class names to the in memory class or
sequence of bytecodes implementing the class.

» The different mains are loaded into the JVM and their
shared classes are cross-referenced.

» This clearly keeps one version of each class across
applications

» But it produces an unacceptable amount of
interference across them.

» Think System.setOut (...)

A Battle Cry for a

Approach-0: Custom Class-loaders Systemlovel JVM

in Debian

Pablo Duboue

» While the custom class-loaders approach seem
laughable at first, it is in wide-spread use (!)

» An application server is just that, in a sense (think
tomcat)

» The JVM strict semantics are perfect for application
isolation
» To make it work, a very strict java security manager

is in place to protect the system library classes that
produce interference

» You don’t get any benefit if you are using the same
non-system library in multiple web applications
deployed in the same application server.

A Battle Cry for a

Approach-1: Bytecode Interposition. System level VM

Appl App2

Appl

App2

/| static fields

static fields

AppClass

AppClass

in Debian
Pablo Duboue

| static ﬁelds| | tatic ﬂelds|

(from Czajkowski '00)

Approach-1: Bytecode Interposition. Syetom v

in Debian

Pablo Duboue

class Counter {
static int cnt;
static { cnt = 7; }
static void add(int val) {
cnt = cnt + val;
}
}

Approach-1: Bytecode Interposition. Syetom v
in Debian

Pablo Duboue

class Counter$sFields { int cnt; }
class Counter$aMethods {
static Counter$sFields[] sfArr =
new Counter$sFields [MAX_APPS];
static Counter$sFields getSFields (){
int id = Thread.currentAppld ();
Counter$sFields sFields;
synchronized (Counter$aMethods.class) {
sFields = sfArr[id];
if (sFields == null) {
sFields = new Counter$sFields ();
sfArr[id] = sFields;
Counter. hiddenS$initializer ();
}
}

return sFields;

Approach-1: Overheads

6% (P, BE%

O Synchronizian in
getputstatic

W Synchroniziaon in
new

O Replicating

A Battle Cry for a
System-level JVM
in Debian

Pablo Duboue

Approach-1: Other Issues. Syetom v

in Debian

Pablo Duboue

» Need special implementations for key classes in the
java library (e.g., System)

» Different bytecode interposition for architectures that
allow for the double check idiom to work well without
need for synchronization

Approach-2: JVM Modification.

r \
: Task X I TaskY !
| " 1
: o A’s instance of |
i B’s instance of A’s instance of i ' 'avilnll:nancc'ek?ss i
H Java.lang.Class Jjava.lang.Class i Java.‘ang.¢'a H
| N N | H
: o !
| :: i
H - [— Task Y’s 1
. ol W e | {
i Task X's Task X’s i i R class H
! class class i instance mirror '
' mirror instance]| ofA — i
! mirror — v forA 1
\| forB of A N Y I
1 for A [H
! [S * ;: '
[S upnpuynpupa ISR FPUPUPUPR s PP R Ve . H
ST v
o X o Internal shared
P representation Task class
| f A — o o mirrors

Internal shared — ° - :|_|_[_ -]:I e

representation H XY

ke B’s constant|} - Shiared

S var offset JVM
el e var holder — runtime

A Battle Cry for a
System-level JVM
in Debian

Pablo Duboue

Approach-2: JNI Sandboxing.

r \
: Task X I TaskY !
\ " .
' ! . . !
i B’s instance of A’s instance of i i ivzll;:;an?kZ'E i
H Java.lang.Class Jjava.lang.Class i Java.‘ang.¢'a H
| . } ' i
1 i .
| :: i
H - [— Task Y’s 1
. ek X | {
i Task X's Task X’s i i R class H
! class class i instance mirror '
' mirror instance]| ofA — i
H mirror — v for A !
\| forB of A N Y]
1 for A [H
! [S * ;: '
[S upnpuynpupa ISR FPUPUPUPR s PP R Ve . H
CTTI1.0) v
o X o Internal shared
P representation Task class
t B -- -- .

Internal shared — of A . :|_|_[_ _]:I :::;?rs

representation H XY

o2 B’s constant|} - Shiared

L= var offset JVM
el e var holder — runtime

A Battle Cry for a
System-level JVM
in Debian

Pablo Duboue

A Battle Cry for a

Approach-2: Other Issues. System lovel JVM

in Debian

Pablo Duboue

» Using extra heap space in a best-effort basis
» Application asks for 2Gb, but MVM is managing 6Gb

» Application temporarily receives 6Gb until other
applications load.

» Class Initialization and Class Resolution Barriers

» Bits of native code that gets compiled away after the
class is initialized

» In the MVM case, it cannot be compiled away, so it
adds to overhead.

» Few system classes still need to be modified as in
the previous approach

» These modifications do not support custom
class-loaders

» Eclipse-based applications are still on their own.

Infrastructure Issues e

in Debian

Pablo Duboue

» /usr/bin/java

» The best way to think about it is screen vs. bash
» Extra arguments to refer to the instance of the MVM
to launch against

» System-level (init.d)

» If we want to have a system-level started upon boot.
» Running under which user?
» Really necessary?

Bug-Reporting Issues Systomiors VM

in Debian

Pablo Duboue

» MVM bugs

» Can be tricky to debug (interference)
» Might be related more to incomplete MVM
implementations

» If we want to support a MVM we need to give some
flexibility to accept MVM-related bug reports.
» This is in the same line as other non-OpenJDK bug

reports (although worse as it pertains to multiple
applications)

Regular JVM vs. MVM Systomiors VM
in Debian

Pablo Duboue

» The MVM is a different JDK and will be managed by
update—-alternatives as usual

» However, in many aspects the MVM is a focused fork
of OpendDK

» The JNI libraries should work and most of the custom
JVM arguments.

» But application wrappers won’t detect it as “the”
OpendDK.

» Different system libraries for different architectures

» For Approach-1, to profit from sound double check
idiom implementations.

Supporting Multiple Architectures / JVMs Systom vl WM

in Debian

Pablo Duboue

» Nine Architectures and Four JVMs.

» Implementing a MVM solution for Debian is not just
patching OpendDK to build a i386 MVM.

» Relationship with GCJ

» Obviously, GCJ also cares about native code and
Java.

Thinking Small Systomiors VM

in Debian

Pablo Duboue

» JIT-cache

» Maybe we can gain most of the advantages of the
MVM by setting up a system global JIT-cache on disk
» Address only the reduplication of compilation

» Won't address the memory reduplication (until
patched into an ‘almost’ MVM solution)

» JNI Isolates

» This might be one of the most interesting features in
the MVM

» We can try to have this in upstream (and into Debian)
as an starting point.

A Battle Cry for a
SU m mal'y System-level JVM

in Debian

Pablo Duboue

» Keeping multiple copies of a system library in RAM is
a solved problem for machine code libraries since the
advent of dynamic load libraries

» However, Java as we have it in Debian (and
OpendDK) can’t do that.

» This problem has been studied (and solved) in the
research world.

» |t will take effort to get this technology implemented
and integrated

» But it is doable
» Pointers? Contacts? Volunteers?
» DrDub in #debian-java / pablo.duboue@gmail.com

	Deep Questions
	What?
	Why?
	Who?

	The Deeper Question: How?
	Multiple Approaches to Multi-App JVMs

	Multi-Apps JVMs within Debian

