Prolégomènes Supervised Learning Unsupervised Learning In a Nutshell

Practical Introduction to Machine Learning

Pablo Ariel Duboue, PhD

Les Laboratoires Foulab Montreal, Quebec

RadialPoint Community Tech Talks

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- 2 Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- 4 In a Nutshell
 - Thoughtland

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- In a Nutshe
 - Thoughtland

Before Montreal

- Columbia University
 - WSD in biology texts (GENIES)
 - Natural Language Generation in medical and intelligence domains (MAGIC, AQUAINT)
 - Thesis: "Indirect Supervised Learning of Strategic Generation Logic", defended Jan. 2005.
 - Advisor: Kathy McKeown
 - Committee: Hirschberg/Jurafsky/Rambow/Jebara
- IBM Research Watson
 - AQUAINT: Question Answering (PIQuAnT)
 - Enterprise Search Expert Search (TREC)
 - Connections between events (GALE)
 - Deep QA Watson

In Montreal

I am passionate about improving society through language technology and split my time between teaching, doing research and contributing to free software projects

- Collaboration with Prof. Nie at GRIUM
 - Hunter Gatherer project (Montreal Python next Monday)
- Taught a graduate class in NLG in Argentina
- Contributed to a number of Free Software projects
- Doing some consulting focusing on startups and small businesses
 - MatchFWD, UrbanOrca, KeaText

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- 4 In a Nutshe
 - Thoughtland

Why This Talk

- Levels of abstraction.
 - Vacuum tubes

- Machine learning from practitioners for practitioners
- https://github.com/DrDub/Thoughtland

What is Machine Learning?

- A new way of programming
- Magic!
- Leaving part of the behavior of your program to be specified by calculating unknown numbers from "data"
 - Two phases of execution: "training" and "application"

The ultimate TDD

- If you're using a library, you almost do no coding, just test!
- But every time you test, your data becomes more and more obsolete
 - No peeking!
- Have met people who didn't have any tests and considered
 - Bugs in the code same are the same as model issues
 - My experience has been quite the opposite, the code you write on top of machine learning algorithms has to be double and triple checked

Taxonomy of Machine Learning Approaches

Supervised learning

Monkey see, monkey do

- Classification
- Unsupervised learning

Do I look fat?

- Clustering
- Others
 - Reinforcement learning: learning from past successes and mistakes (good for game Als and politicians)
 - Active learning: asking what you don't know (needs less data)
 - Semi-supervised: annotated + raw data

Major Libraries

- Scikit-learn (Python)
- R packages (R)
- Weka (Java)
- Mallet (CRF, Java)
- OpenNLP MaxEnt (Java)
- Apache Mahout (Java)
- ...
- •

Concepts

- Trying to learn a function $f(x_1,...,x_n) \rightarrow y$
 - x_i are the **input** features.
 - y is the **target** class.
- The key here is extrapolation, that is, we want our learned function to generalize to unseen inputs.
 - Linear interpolation is on itself a type of supervised learning.

Data

- Collecting the data
 - Data collection hooks
 - Annotating data
 - Annotation guidelines
 - Cross and self agreement
- Representing the data (as **features**, more on this later)
- Understanding how well the system operates over the data
 - Testing on unseen data
- A DB is a rather poor ML algorithm
 - Make sure your system is not just memorizing the data
 - "Freedom" of the model

Evaluating

- Held out data
 - Make sure the held out is representative of the problem and the overall population of instances you want to apply the classifier
- Repeated experiments
 - Every time you run something on eval data, it changes you!
- Cross-validation
 - Training and testing on the same data but not quite
 - data = $\{A,B,C\}$
 - train in A.B. test in C
 - train in A,C, test in B
 - train in B,C, test in A

Metrics

- Measuring how many times a classifier outputs the right answer ("accuracy") is not enough
 - Many interesting problems are very biased towards a background class
 - If 95% of the time something doesn't happen, saying it'll never happen (not a very useful classifier!) will make you only 5% wrong
- Metrics:

$$precision = \frac{|correctly\ tagged|}{|tagged|} = \frac{tp}{tp + fp}$$

$$recall = \frac{|correctly\ tagged|}{|should\ be\ tagged|} = \frac{tp}{tp + fn}$$

$$F = 2 \cdot \frac{P \cdot R}{D + D}$$

Concepts
Naive Bayes
Logistic Regression
Maximum Entropy
Neural Networks
Wrap-Up

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- 2 Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- 4 In a Nutshel
 - Thoughtland

Naive Bayes

- Count and multiply
- How spam filters work
- Very easy to implement
- Works relatively well but it can seldom solve the problem completely
 - If you add the target class as a feature, it will still has a high error rate
 - It never "trusts" anything too much

Why Naive?

Bayes Rule

$$p(C \mid F_1, ..., F_n) = \frac{p(C)p(F_1, ..., F_n \mid C)}{p(F_1, ..., F_n)}$$

$$posterior = \frac{prior \times likelihood}{evidence}$$

- Naive Part
 - Independence assumption of the F_x , that is $p(F_i \mid C, F_i) = p(F_i \mid C)$

$$p(C|F_1,...,F_n) \propto p(C)p(F_1 \mid C)...p(F_n \mid C)$$

Decision Trees

Find the partition of the data with higher information gain
 Value of a piece of gossip

IG (splitting S at A into T) =
$$H(S) - \sum_{t \in T} p(t) H(t)$$

- Easy to understand
 - Both algorithm and trained models
- Can overfit badly
 - Underperforming
- Coming back with random forests

Biology: Problem

- "Disambiguating proteins, genes, and RNA in text: a machine learning approach," Hatzivassiloglou, Duboue, Rzhetsky (2001)
- The same term refers to genes, proteins and mRNA:
 - "By UV cross-linking and immunoprecipitation, we show that SBP2 specifically binds selenoprotein mRNAs both in vitro and in vivo."
 - "The **SBP2** clone used in this study generates a 3173 nt transcript (2541 nt of coding sequence plus a 632 nt 3' UTR truncated at the polyadenylation site)."
- This ambiguity is so pervasive that in many cases the author of the text inserts the word "gene", "protein" or "mRNA" to disambiguate it itself
 - That happens in only 2.65% of the cases though

Biology: Features

- Take a context around the term, use the occurrence of words before or after the term as features.
- Keep a tally of the number of times each word has appear with which target class:

term	gene	protein	mRNA
PRIORS	0.44	0.42	0.14
D-PHE-PRO-VAL-ORN-LEU		1.0	
NOVAGEN	0.46	0.46	0.08
GLCNAC-MAN	1.0		
REV-RESPONSIVE	0.5	0.5	
EPICENTRE		1.0	
GENEROUSLY	0.33	0.67	

Biology: Methods

Instead of multiplying, operate on logs

```
float [] predict = (float []) priors.clone();
// ... for each word in context ...
if (wordfreqs.containsKey(word)) {
  float [] logfreqs = wordfreqs.get(word);
  for (int i = 0; i < predict.length; i++)
    predict[i] += logfreqs[i];
}</pre>
```

Biology: Results

- Used a number of variations on the features
 - Removed capitalization, stemming, filtered part-of-speech, added positional information
 - Changed the problem from three-way to two-way classification
- Results of Tree-learning and Naive Bayes were comparable (76% two-way and 67% three-way).
- Distilled some interesting rules from the decision trees:
 - after ENCODES is present before ENCODES is NOT present ⇒class gene [96.5%]

Concepts Naive Bayes Logistic Regression Maximum Entropy Neural Networks Wrap-Up

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- 4 In a Nutshel
 - Thoughtland

Logistic Regression

- Won't explain in detail
- It is similar to linear regression but in log space

(Wikipedia)

- Can take lots of features and lots of data
- High performance
- Output is a goodness of fit

Weka

- ARFF format
 - Text file, with two sections
 @relation training_name
 @attribute attribute_name numeric x number of features
 @data
 - 7.0,1.1,... x number of training instances
- Training classifiers
 java -jar weka.jar weka.classifiers.functions.LogisticRegression -t
 train.arff
 - Or programmatically:
 - Create an Instances class with certain attributes and create objects of type Instance to add to it
 - Create an empty classifier and train it on the Instances
- Using the trained classifiers
 classifyInstance(Instance) Or distributionForInstance(Instance)

Concepts Naive Bayes Logistic Regression Maximum Entropy Neural Networks Wrap-Up

Why Weka?

Jeopardy!™: Problem

- Learning to rank
 - Rather than predicting a class, choose the best one among many instances
 - In the Jeopardy!™ case, the instances were candidate answers
- Features related to each particular answer candidate
 - "evidence"
- As logistic regression produces a goodness of fit, it can be used for ranking
 - Other classifiers might just give you 0 or 1 independent of relative goodness

Jeopardy!™: Deployment

DeepQA Architecture, from Ferrucci (2012)

Jeopardy!™: Feature Engineering

First four phases of merging and ranking, from Gondek, Lally, Kalyanpur, Murdock, Duboue, Zhang, Pan, Qiu, Welty (2012)

Concepts Naive Bayes Logistic Regression Maximum Entropy Neural Networks Wrap-Up

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- In a Nutshel
 - Thoughtland

Maximum Entropy

- Tons and tons of (binary) features
- Very popular at beginning of 2000's
 - CRF has taken some of its glamour
 - Mature code
- OpenNLP MaxEnt uses strings to represent its input data

```
previous=succeeds current=Terrence next=D. currentWordIsCapitalized
```

 Training with trainModel(dataIndexer, iterations) and using it with double[] eval(String[] context)

KeaText: French POS Tagger

- Work done recently at KeaText, a local company specialized on bilingual information extraction
 - Contracts, legal judgements, etc. extract key information items (who, when, where)
 - Highly specialized staff

- An existing part-of-speech tagger for the French language was a mixture of Python and Perl
 - Instead of re-engineering it, we ran it on a large corpus of French documents
 - Trained a new MaxEnt model on it
- Took less than 2 days of work and produced a Java POS tagger at about 5% the same performance as the original

KeaText: Approach

- Part-of-speech tagging is not unlike word sense disambiguation described at the beginning of the talk
- The problem is more complicated, though, as it involves more classes and every word has to be tagged
 - MaxEnt lends itself well to an approach where everything that can be tought of it is considered as a feature
- Features include
 - The word itself
 - Suffixes, up to the last four characters of the word
 - Preffixes, up to the last four characters of the word
 - Previous words, with their identified tags
 - Whether the word has special characters or if it is all numbers or uppercase

Concepts Naive Bayes Logistic Regression Maximum Entropy Neural Networks Wrap-Up

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- In a Nutshel
 - Thoughtland

Neural Networks

- The "original" ML
- Second to best algorithm
- Slow
- Most people are familiar with it
- Al winter
- Making a come back with Deep Learning

How to Train ANNs

Execution: Feed-forward

$$y_q = K\left(\sum_i x_i * w_{iq}\right)$$

- Training: Backpropagation of errors
- Problem: overfitting, use a separate set as the termination criteria

K4B: Problem

- Given the bytecodes of a java method, come up with some terms to describe it
- Use all the Java code in the Debian archive as training data
 - Pairs bytecodes / javadoc
- Applications in Reverse Engineering
 - Java malware
- More information:
 - Training data: http://keywords4bytecodes.org
 - Source code: https://github.com/DrDub/keywords4bytecodes
- MEKA: Multi-label Extensions to Weka: http://meka.sourceforge.net/

Concepts
Naive Bayes
Logistic Regression
Maximum Entropy
Neural Networks
Wrap-Up

```
private final int c(int) {
   0 aload 0
   1 getfield org.jpc.emulator.f.v
   4 invokeinterface org.jpc.support.j.e()
   9 aload 0
   10 getfield org.jpc.emulator.f.i
   13 invokevirtual org.jpc.emulator.motherboard.q.e()
   16 aload 0
   17 getfield org.jpc.emulator.f.j
   20 invokevirtual org.jpc.emulator.motherboard.q.e()
   23 iconst 0
   24 istore 2
   25 iload 1
   26 if le 128
   29 aload 0
   30 getfield org.jpc.emulator.f.b
   33 invokevirtual org.jpc.emulator.processor.t.w()
```

```
private final int c(int) {
   0 aload 0
   1 getfield org.jpc.emulator.f.v
   4 invokeinterface org.jpc.support.j.e()
   9 aload 0
   10 getfield org.jpc.emulator.f.i
   13 invokevirtual org.jpc.emulator.motherboard.q.e()
   16 aload 0
   17 getfield org.jpc.emulator.f.j
   20 invokevirtual org.jpc.emulator.motherboard.q.e()
   23 iconst 0
   24 istore 2
   25 iload 1
   26 if le 128
   29 aload 0
   30 getfield org.jpc.emulator.f.b
   33 invokevirtual org.jpc.emulator.processor.t.w()
```

```
private final int c(int) {
   0 aload 0
                                              e ()
                                              . e ()
                                       sub
 basic
                  largeencodes
```

Concepts
Naive Bayes
Logistic Regression
Maximum Entropy
Neural Networks
Wrap-Up

```
private final int c(int) {
   0 aload 0
   1 getfield org.jpc.emulator.f.v
   4 invokeinterface org.jpc.support.j.e()
   9 aload 0
   10 getfield org.jpc.emulator.f.i
   13 invokevirtual org.jpc.emulator.motherboard.q.e()
   16 aload 0
   17 getfield org.jpc.emulator.f.j
   20 invokevirtual org.jpc.emulator.motherboard.q.e()
   23 iconst 0
   24 istore 2
   25 iload 1
   26 if le 128
   29 aload 0
   30 getfield org.jpc.emulator.f.b
   33 invokevirtual org.jpc.emulator.processor.t.w()
```

```
private final int c(int) {
     0 aload_0
```


Concepts Naive Bayes Logistic Regression Maximum Entropy Neural Networks Wrap-Up

K4B: Data

- Final corpus:
 - 1M methods
 - 35 M words
 - 24M JVM instructions
- Example training instance:

23 if eq 36

- Class: net.sf.antcontrib.property.Variable
- Method: public void execute() throws org.apache.tools.ant.BuildException
- lavaDoc: Execute this task
- Bytecodes: (126 in total)

```
0 aload_0

    1 getfield net.sf.antcontrib.property.Variable.remove

4 ifeq 45
7 aload_0
8 getfield net.sf.antcontrib.property.Variable.name
11 ifnull 26
14 aload 0

    15 getfield net.sf.antcontrib.property.Variable.name

18 1dc ""
```

K4B: Results

Term	Р	R	F
@ generated	0.76	0.80	0.783
replaced	0.93	0.60	0.734
@ param	0.64	0.74	0.690
icu	0.75	0.49	0.600
o the	0.47	0.75	0.582
@ stable	0.72	0.45	0.561
@ inheritdoc	0.42	0.60	0.495
@ return the	0.41	0.52	0.463
receiver	0.72	0.31	0.440

Concepts Naive Bayes Logistic Regression Maximum Entropy Neural Networks Wrap-Up

How to Choose

by Andreas Mueller

http://neekahoo-vision.hlogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html

How to Come Up with Features

- Throw everything (and the kitchen sink) at it
- Stop and think
 - What information would **you** us to solve that problem?
 - 2 Look for published work
 - Papers: http://aclweb.org/anthology-new/
 - Blog postings
 - Open source projects
- Add computable features
 - Learning to sum takes an incredible amount of training!

Concepts Naive Bayes Logistic Regression Maximum Entropy Neural Networks Wrap-Up

Improving the Classifier

- More data
- Better features
- Solve a different problem
- Shop around for a different classifier / parametrization
 - Procedural overfitting
- Add unlabelled data
- Drop ML and program it by hand

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- In a Nutshel
 - Thoughtland

Clustering

- A little more magical
- Having a model, fitting parameters
- Having parameters, building a model
- Knowing the answer, looking for the question
- Concept of distance between instances

k-means Clustering

(Wikipedia)

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- 4 In a Nutshe
 - Thoughtland

Apache Mahout

- Recommendation
- Clustering
- Classification
- Hadoop
- Input is in Hadoop sequence file format:

```
SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, seqFile,
Text.class, VectorWritable.class);
// populate vectorWritable with a boolean vector, one entry per person
writer.append(new Text(companyName), vectorWritable);
```

Execution is done by calling a "driver" method:

KMeansDriver.run(conf, seqFile, clusters, clusteringOutputPath, measure, convergence_threshold, maxIter, produceClusterOutput, removeOutliers, userHadoop);

MatchFWD: Problem

MatchFWD: Details

• Distance: we want to tell how similar are two companies based on the people who worked for both

$$\textit{distance} \left(\textit{company}_1, \textit{company}_2\right) = \frac{|\textit{people worked for both}|}{|\textit{people worked in either}|}$$

- The actual distance incorporates an extra item for company size
- We re-cluster when clusters are too big producing a type of hierarchical clustering
- We then computed relevant statistics about the chances of overlap due to randomness for inter-cluster distances

MatchFWD: Results

- 17k companies into 3k clusters.
- Still not enough data.
 - Only 10% of the matches can use the clusters
- For example, here are some companies "similar" to RadialPoint (a 173 entries cluster):
 - INM The world's largest independent mobile advertising network.
 - CNW Group Connecting organizations to relevant news audiences through integrated, intelligent communications and disclosure services.
 - The Createch Group A leading Canadian consulting company specialized in the integration of ERP and CRM solutions.

 Manwin An industry-leading IT firm specialising in entertainment
 - media, web marketing and development.

 QNX Software Systems Global leader in realtime operating systems.

Apache Mahout: Some Problems

- The authors have written a book "Mahout in Action"
 - Book is actually very good
- But code has evolved from book
 - To use you'll need to look at the code continuously
- Silly bugs
 - Driver script classpath won't work
- Silly omissions
 - Can't cluster instances with labels
- Hadoop support is on and off

Outline

- Prolégomènes
 - About the Speaker
 - This Talk
- Supervised Learning
 - Naive Bayes
 - Logistic Regression
 - Maximum Entropy
 - Neural Networks
- Unsupervised Learning
 - Clustering
 - Apache Mahout
- 4 In a Nutshell
 - Thoughtland

The Bad News

- Difficult to mantain
 - Link between data and trained model is easy to get lost
 - You'll be dealing with errors (defects) and very few ways to solve them
 - Adding more data, if it helps, will produce lots of regressions (asymptotic behavior)
 - Not all errors are the same, but they look like that in the reported metrics
- Your compile time just begun to be measured in hours (or days)
 - Time to upgrade... your cluster.
- Be prepared to stare into the void every time you are asked about odd system behavior

Thoughtland

- Visualizing n-dimensional error surfaces
- Machine Learning with Weka (cross-validated error cloud)
- Clustering with Apache Mahout (using model based clustering)
- Text Generation (using OpenSchema and SimpleNLG)
- http://thoughtland.duboue.net
 - Scala
 - Open source: https://github.com/DrDub/Thoughtland

Summary

- Don't be afraid of getting your hands dirty
- Try to incorporate some trained models in your existing work
 - But don't forget about testing
 - And keeping track of the input data
 - And don't train at the customer's computer
- Pick a library, any library, and give it a try with existing data sets:
 - UCI Machine Learning Repository: http://www.ics.uci.edu/~mlearn/
 - TunedIT: http://tunedit.org/

Contacting the Speaker

- Email: pablo.duboue@gmail.com
- Website: http://duboue.net
- Twitter: @pabloduboue
- LinkedIn: http://linkedin.com/in/pabloduboue
- IRC: DrDub
- GitHub: https://github.com/DrDub
- Always looking for new collaboration opportunities
 - Very interested in teaching a class either in Montreal or on-line